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Abstract

This paper examines the fundamental problem areas and the available solutions
in seismic signal processing. Topics considered include seismic signal modeling,
spectral matching and the ARMA model, parameter estimation , hcmiomorphic versuspredictive deconvolution, K*.1m*’~ filtering, and the measurenent of the firstarrival time. —~~~~~~~~~
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An Introduction to Seismic Signal Processing

C. H. Chen

1. Introduction

In recent years , computers have played an increasingly important role in

seismic studies such as the petroleum exoloration , nuclear detection , earthquake

research and marine seismic studies. Computers are needed to process large

volumes of seismic data from which useful information must be extracted accurately.

A number of signal processing algorithms have been developed In recent years many

of which are very useful for seismic data. Although the processing techniques

vary with the nature of seismic data , an important problem in seismic signal

processing Is deconvo].ution . The received seismic data can be considered as the

result of convolution between the source signal and the transmission medium plus

the additive instrument noise. This paper will be concerned mainly with the

deconvolution of such convolved signal as well as other seismic signal processing

algorithms. This discussion is preceded by a study of seismic signal modeling

as a good understanding of the seismic signal generation is much needed for

effective signal processing .

2. Seismic Signal Modeling

Figures 1, 2 , and 3 depict simplified transmission processes of seismic

waves. Figure 1 shows an inhomogeneous earth excited by a deep source. The

earth is bounded by two homogeneous infinite half-spaces, the air and the

basement rock. Here the earth is a distributed parameter system governed by

partial differential equations. For digital processing , the originally continuous

velocity profile can be quantized and , as a result , the earth can now be modeled

as a lumped paramter system. If the time of signal propagation through a layer

is short c~ upared with the duration of the signal , then the lumped parameter

assumption is valid. By choosing the depth of each layer to be very small , i .e.

considering many layers , we can satisfy the lumped parameter conditions .

To simplify the analysis, we can assume that the system of Fig. 1 is linear

and time—invariant • Let a ’s represent the constant parameters associated with the
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N layers. Each layer causes a unit delay for the seismic wave . We can expect

the input x1~ and the output y5 to satisfy the linear difference equation,

7 + ft
lY 1 ••  &fl7~~; (1)

Taking z—transform On both sides of Eq. (1) we obtain the ratio,
Y (z) 1

= 
-1 —2 N = B(z) (2)

1 + a 1z + a z

which represents the transfer function of an all- pole filter. Our physical claim

that the lumped parameter model represents a stable system is equivalent to the

mathematical condition that the transfer function contains no poles outside the

unit circle. Equation (1) also represents an autoregressive model for the

digitized seismic signal.

Figure 2 describes the transmission of teleseismic waves. A more appropriate

model Is given by Fig. 3 which shows internal primary reflections caused by a

downgoing unit impulse 6~ applied at the surface. For clarity , ray paths are

drawn at oblique incidence but wave—motion analysis is for normal incidence. Let

b be the response of a single layer with respect to the unit impulse input ~~
By- linearity property, a delayed impulse n-rn gives rise to ~~~~ and C’~ gives

rise to Cb5 where C is a constant . By superposition principle, the total impulse

response can be written as

— e1
b~_1 + £2b~~2 

+. • .+ ~~~~~ 
x * b

where “a” denotes convolution and 
~ ~
s are the hypothetical sources of strength

given by the reflection coefficients r~ at various layers. Taking the z—transform

of Eq. (3) we have
-1 -2 -N

£ Z  + C Z  +...+~~~~Z
R (z )  — E (z ) B (z )  = 1 2 

2 
N (lê)

1 + + a2z +... + a z

which gives the transfer function of a normal-incidence reflection seismogram

anti is the ARMI’~ model used in reflection seismology.

- -  —
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Since the layered system is assumed to be both linear and time invariant,

then the reflection seismogram y~ due to an arbitrary source pulse s~ is

= h
fl
*a.d = Cn~

’bu Sn = £ *(b *5) = C *(A) (5)

where — bn*sn Is defined as a composite vavelet consisting of the reverberation

wavelet b and source pulse s~. Thus Eq. (5) describes the normal incidence

reflection seismogram, where b~ represents the autoregressive component and

~~~ the moving average component. The basic deconvolut ion problem is to filter

such that we can best recover the reflection coefficient sequence

3. Spectral Matching and the ABMA Model

The ARMA model as derived in the previous section is the most general linear

seismic signal model. Theoretically speaking, the spectrum of any physical signal.

can be matched , i.e. fitted~ perfectly by an autoregressive model with an

arbitrarily high order . For a typical set of teleseismic waveforms , a good

spectral matching based on the autoregressive, i.e. aU-pole, model has been

reported [1][2]. If the AEMA , i.e. pole—zero , model is used , a better spectral

matching is expected. The degree of spectral matching can be measured by the

mean squared error between the actual and the modelled signals . Figure 1~

illustrates spectral matching by pole—zero model which has lower mean squared

error. Again the spectral matching is good. However , the problems associated

with the ABMA model are quite obvious : (i) The order of the model must be finite

in practice. The linear model is limited in its capability not only in spectral.

matching but also represents only a first order approximation to the original

signal . (2) Computationally the order of the model and the coefficients in both

numerator and denominator must be determined. This is far from being a simple

task. In fact there has not been a satisfacto ry solution to the problem of

determinin g the numerator polynomial and the order of the model.
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~~. Parameter Estimation and Computation

In this section we first consider the all—pole linear prediction analysis

We assume that the signal s(n ) ,  0 < n < N  - 1, can be approximated as a weighted

linear summation of past samples , denoted as

= — 

k 1  
a1 8n—i. (6)

‘where a1 are the predictor coefficients which are the coefficient s of the AR model,

and p is the order of the filter. The method of least squares is most often used

[3] to estimate a1 by minimizing the total mean squared errors where the error is

defined as e = s - s • There are two distinct methods for estimating then n n
parameters . The autocorrelation method minimizes the error e over an infinite

duration . Since the signal is of finite duration in practice, the infinite

duration signal can be windowed to become finite duration. The autocorrelation

matrix is a Toepliz matrix whose special properties lead to efficient Levinson

and Durbin recursion algoritbnis for estimating a1. The second method Is covariance

method which considers a finite duration signal only so it minimizes the error

over a finite interval. The covariance matrix is symmetric but the diagonal

1terms are not equal . The assumption of zero values for data outside the finite

duration is not valid. This is the main source of inaccuracy in both methods.

The autocorre~~tion method guarantees filter (model ) stability- while the covar iance

method does not .

Computationally the parameters can be determined without major computational

load . The estimation of autocorrelation or covar iance from data points may take

most of computation t ime when the number~of data points far exceed the order of

the filter, as is often the case.

The maximum entropy method states that the least assumptions should be made

about the unobserved data points. This may be restated by saying that the spectrum

estimated should be max1tna.lly random (maximum uncertainty) . The maximum entropy

solution for , parameters should be the same as that of the AR model except for

details of the algoritimi.

-~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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After the parameters of the AR model are determined we shall then use the

ARMA model by incorporating the numerator polynomials. Let the denominator be

now fixed, we can determine the numerator polynomial, from !q. (li) by examining

the ratic ,
B(z) _ 1
11(z ) 

— 

e1z
’ + e2z

2 
+... + e

~~
Z

~~~

where the coefficients can be determined by the methods which are used for the

AR model as the inverse z—transform of B(z)/H(z) is now available. Obviously one

iteration may not be enough. We can hold s~ ’s constant and adjust a
1
’s by

repeating the above procedure. This method is much simpler in computation than

direct estimation [3] of the parameters of the ARMA model. We have tested this

method on short length artificial data sequence to verify the convergence of the

recursive procedure. Convergence is verified experimentally. For real. data such

as of length lO2i~ point s, it will, be difficult, however, to determine the

coefficients if the order of the filter is high .

Recently the lattice structures have been developed which offer a convenient

visual realization of the Levinson recursion. For applications where the short-

term spectrum changes as a function of time, the lattice offers a simple , fast—

converging adaptive structure that has given results superior to the traditional

adaptive transversal filter [ ) ~] ( 5 J .
In this section we have briefly discussed techniques related to data modeling

by least squares , especially the estimation of ARMPL model parameters. The

application to seismic signal processing is not limited to spectr&~. estimation

and data compression. There are good physical interpretation of parameters and

related quantities such as the reflection coefficients . The parameters are

potentially useful features for classification of teleseismic events. Good

spectral estimation leads to accurate computation of spectral ratio which is

another useful features in sesimic discrimination. Some recent articles on

spectral analysis in seismic data are [6J [7 1.
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5. HomomorphIc Versus Predictive Deconvolut Ion

In determining the source pulse by using the deconvolution method , both

predictive and homomorphic deconvolution methods have been extensivley studied.

They represent two important but quite different approach to the problem. In

Eq. (5) the theoretical reverberation vavelet bn is minimum phase , while the

source pulse Sn is not. For given autocorrelation, only the minimum phase pulse

corresponading to a~ can be determined. The problem in predictive deconvolution

is thus to determine an all—pass filter to obtain a source pulse with correct

phase characteristic. To do so an assumption about the phase characteristic of

the source pulse is required. For the homomorphic deconvolution (81(9], the

cutoff quefrencies that produce proper pulse estimate actually also requires an

assumption about delay (or phase) properties of the source pulse. However ,

such phase assumption is less critical in homomorphic deconvolution than in

predictive deconvolution. In homomorphic deconvolut ion an exponential weighting

of the data sequence is usually necessary to remove computational instability due

to the nonminimum phase source pulse. Figure 5 shows some results of cepstral

analysis on the teleseismic records.

In the homomorphic deconvolution the reflection coefficient sequence can be

determined once the complex cepstrum corresponding to the source pulse and

reverberation is removed. For the predictive deconvolution , one assumes that

the reflection coefficients are a random uncorrelated . sequence to be estimated.

6. Kalman Filtering Approach

The Kalman filtering approach can be. tiéed to obtain optimal smoothed estimates

of the reflection coefficient sequence from seismic traces with noise (10]. The

seismic trace can be interpreted as the sum of additive noise and the output of’

a linear system, with rac~~nse Wn given by Eq. (5), excited by white noise
corresponding to th~ reflection coefficient sequence. So the estimation of’

reflection eo~fficient is now the same problem as estimating the random

,,
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disturbance in a state equation. Assumption is made that basic composite wavelet

is known a priori, and that the both additive noise and the ‘white noise for the

reflection coefficient sequence have known covariance matrices , either of which

may be time varying. The Kalman filtering approach permits a more flexible

modeling assumption than the Wiener filtering to the predictive deconvolution.

7. Measuring the First Arrival Time

In microearthquakes and in explosive events , for example , it will, be necessary

to measure accurately the first arrival, time. The ambiguity associated with the

measurement of the first arrival time is due to the facts that the signal is

contaminated by noise and the ‘wave shape of the first arrival is unknown. Thus

the methods of “beam forming” and “matched filtering” are not acceptable.

However, the first arrival does occur in a context , the features of which can be

determined more reliably. Anderson [11) developed a simple but robust algorithm

for automatic analysis of tnicroearthquake data to pick the first arrival with

good accuracy. The algorithm uses informations from multiple levels such as a

tentative location, detection of the event , arrival ti~te residuals, and the

features which represent physical measurements of the seismic wave including the

first and second zero crossing, the first maximum in the half cycle, etc. Syntactic

pattern recognition should be a useful. approach to improve the algorithm.
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